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Abstract. Micromagnetic studies of the reversal of stripe domains in elements of different geometries are
reported. Various 2D and 3D codes are used in order to allow comparison between an infinite slab, nanowires
and dots. Starting from a saturated state the establishment of stripe domains through the sample is first
studied. Contrary to the thin film case, the nucleation of this pattern is not uniform and is very different
to the geometry of a wire or an isolated dot. Special attention is paid to the reversal of the core of the
vortex (the remnants of inner walls between up and down domains) which requires the insertion of point
singularities called Bloch points (BP) either at surfaces or created in a pair depending on the length allowed
for the stripe in the corresponding element. The magnetization distribution around the core of the various
BP is described in detail as well as the key characteristics of their motion. Finally, some experiments are
suggested predicting the behaviour of stripe domains under an applied field.

PACS. 75.75.+a Magnetic properties of nanostructures – 07.05.Tp Computer modeling and simulation
– 75.60.Ch Domain walls and domain structure

1 Introduction

The study of magnetic configurations in confined
geometries is currently stimulating intense practical and
theoretical attention. This is the case for Co nanowires
exhibiting a stripe domain structure which display spin
transport effects with potential as magnetic sensors.
On the other hand, dots with perpendicular magnetic
anisotropy are of great interest in information storage me-
dia and more generally in spin-electronic devices [1]. In
all these cases the investigation of the nucleation of do-
main patterns starting from the saturated state, followed
by magnetization reversal in an opposite field associated
with hysteresis are topics of basic interest for technical
applications as well as of fundamental interest in the the-
ory of ferromagnetism. In this paper, these problems will
be treated for three different geometries (see Fig. 1): the
case of a thin film, a nanowire and finally a dot, all of
them exhibiting a uniaxial perpendicular anisotropy. Mi-
cromagnetic simulations are used which prove to be in-
structive in bridging the gap between theory and exper-
iment. It has been already mentioned (see for example
Hubert and Schäfer [2]) that under a critical field or at a
critical thickness the magnetization starts to deviate from
the uniform saturated state towards the form of sinusoidal
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stripe domains oriented parallel to the applied field. These
critical conditions, as well as the magnetization mode at
this nucleation point (also labeled spin reorientation tran-
sition point), can be derived analytically from micomag-
netic theory [3]. While a uniform nucleation is expected
over the entire sample for an infinite thin film, the situa-
tion is more complex when the magnetization distribution
can not be considered as invariant along the applied field
direction. In our case, such invariance is lost along the
OZ axis parallel to the applied field direction as shown
in Figure 1. In nanowires and dots of finite width L, the
magnetization starts to fluctuate near the surface before
condensing into stripe domains which are parallel to the
applied field. In this case it is obvious that the length of
stripes is limited along OZ by the width L. A solution, re-
sulting from numerical computation has been reported in
reference [4] for dots of Cobalt. While wires and dots are
treated here, a full description of stripe nucleation goes
beyond the scope of this paper. In the present study, we
focus on the necessity of Bloch point injection and propa-
gation to realize the polarity reversal of the core of the wall
separating domains. This is needed for topological reasons
when reversing the applied field to reach the opposite sat-
urated state [5]. For stripe domain configurations, there is
no continuous transformation of magnetization distribu-
tion allowed between the saturated state in positive and
negative magnetic fields. On the other hand, the existence
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Fig. 1. Different sample geometries analysed: a) infinite thin
film, b) infinite wire of width L and c) dot, all elements have
the same thickness D. The parallel lines (along OZ) indicate
the direction of elongation of the magnetic stripe.

of a continuous magnetization vector field of constant and
non-zero length MS is the basic assumption of micromag-
netism. Thus, hysteresis properties may be derived which
depend solely on the magnetization distribution and tran-
sitions between allowed structures, bearing in mind that
any process involving Bloch points is a priori excluded
from the computations. However, it has been shown that
standard micromagnetic calculations allow the presence
of a Bloch point [6–9] which is of course located between
mesh points of the discrete calculation. Although the re-
sults show strong mesh dependence, they give the right or-
der of magnitude compared to experimental values when
reasonable mesh sizes are used, as has been demonstrated
in the case of Permalloy thin film disk [8]. The present
work takes advantage of the fact that micromagnetic cal-
culations involving Bloch points are technically feasible
with a reasonable physical validity, to describe the full
hysteresis loop.

This paper is structured as follows. The magnetic
parameters and the various geometries considered are
described in Section 2. The third part deals with a brief
description of the different micromagnetic codes used. A
survey of the weak stripe pattern is given in Section 4
which is devoted to the particular case of an infinite thin
film. An overview of the magnetization processes near sat-
uration followed by the settlement of stripe domain for
dots and nanowires (stripes parallel to the width, L, of the
wire) is presented in Section 5 where the remanent state
is also discussed. The following Section 6 deals with wire
and dot geometries, and describes the switching of the vor-
tex core under a field opposite in direction to that of the
wall core magnetization. While in the case of nanowires
the periodicity of the magnetic pattern is preserved due
to their unlimited length along OX (see Fig. 1b), for dots
the magnetic periodicity is lost as the number of stripes
is restricted due to their finite size. Bloch point injection
and propagation mechanism is studied first for the case
of stripe length smaller than the domain width (6.2.1).
In Section 6.2.2 the same analysis is performed for the
opposite situation where the size of the elements leads
to stripe domains longer than one magnetic period. All
these results are compared to available experimental data
as well as domain observations, and some suggestions for
future experiments are included.

Fig. 2. Equilibrium magnetization profile for a single film
50 nm thick in zero field over one period 2W of a stripe do-
main. The magnetization is independent of the Z coordinate.
The lengths of the arrows are proportional to the correspond-
ing in-plane projections of the magnetization moments. The
polarity of the inner Bloch walls is stressed: (+OZ) in the
present situation.

2 Magnetic parameters and geometry

The first geometry considered corresponds to an in-
finite thin film D = 50 nm thick (Fig. 1a). The
magnetic parameters used correspond to typical val-
ues for hcp cobalt thin epitaxial films namely, satura-
tion magnetization MS = 1400 kA/m, exchange constant
A = 1.8 × 10−11 J/m and uniaxial anisotropy constant
K = 5 × 105 J/m3, the easy axis being perpendicu-
lar to the film (OY axis). Two magnetic characteris-
tic lengths can be defined, one is the Bloch wall width
�B = π

√
A/K = 19 nm and the other one the exchange

length �ex = π
√

A/(1
2µoM2

S) = 12 nm. The quality factor
ratio Q defined as the anisotropy field BK = 2K/M di-
vided by the demagnetising field BD = µOMS becomes
Q = K/(1

2µOM2
S) = 0.4. It is well known [2,10] that

above a critical layer thickness, DC , a weak stripe pat-
tern is expected of period 2W. The value of this critical
layer thickness is: DC ≈ 2 π

√
A/K = 2lB = 38 nm for

very low quality factor and it decreases with increasing Q
(more precisely, for Q = 0.4, the critical thickness is re-
duced to two thirds of the previous value: i.e. 25 nm). One
period, 2W , of such a pattern is schematically drawn in
Figure 2 for an infinite thin film. Essentially, the magnetic
pattern is composed of a succession of up and down mag-
netized domains with closure domains near the surfaces.
Observed by surface sensitive magnetic microscopies such
as Kerr or magnetic force microscopy, the patterns look
like infinite parallel stripes along the axis parallel to which
the saturating field was initially applied (OZ).

The second geometry studied breaks the invariance
along OZ while the periodicity of the pattern along OX is
preserved. This is the case for an infinite nanowire. Note
that we have used the same thickness D = 50 nm for all
geometries we have studied (Figs. 1a, b and c). The paral-
lel stripes are now limited in length by the width L of the
wire. Two cases are considered, firstly the situation with
L < W where W is the equilibrium domain width in zero
magnetic field; in the present situation with W = 58 nm
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(see Sect. 6) we chose L1 = 40 nm. Secondly, we studied
the situation where L > 2W choosing L2 = 200 nm.

Finally, we considered the case of a single Co dot
(Fig. 1c) with thickness D, length L1,2 and width equal
to 2W . Therefore, in the remanent state, the dot is ex-
pected to be able to support only one magnetic period at
equilibrium.

3 Numerical

Depending on the geometry considered, three different
calculation codes were used. The (finite-difference) code
applied to an infinite thin film was initially designed
for the determination of two-dimensional (2D) Néel line
structures in garnet epilayers [11] and adapted in order
to incorporate the periodical nature of the magnetization
pattern [5]. The continuous magnetization distribution is
replaced by a set of constant magnetization prisms of infi-
nite length along Z and of square cross section, size a. The
parameter a was chosen so that the ratio �B/a and �ex/a
remained larger than ≈5, thus a = 2 nm in all calculations.
Using the LLG Micromagnetic simulatorTM [12] we have
modelled the domain structures for the case of the wire
geometry (3D problem). One magnetic period of the struc-
ture is divided into cubic mesh cells (a3 = 2× 2× 2 nm3)
while convenient periodic boundary conditions in planes
X = 0 and X = 2W are ensured. We use this code to
solve the Landau-Lifshitz (LL) equation:

d �M

dt
=

γ

1 + α2
�M × �Heff − γα

(1 + α2)MS

�M × [ �M × �Heff ]

where the gyromagnetic factor γ = µO(−e
m ) = −2, 211 ×

105 (mA−1 s−1). The damping (Gilbert) constant α was
in most cases taken as α = 0.5. Finally, in the case of dots,
the numerical calculations were performed with the pub-
lic micromagnetic program OOMMF [13]. As before, the
mesh cells used in the calculations were cubic (a = 2 nm)
and the same LL equation solved, keeping the value for
the Gilbert damping constant unchanged. The conver-
gence criterion for quasistatic equilibrium calculations was

1
MS

∣
∣
∣d �M

dt

∣
∣
∣ < 0.01 ◦/ns at every mesh point. This way of

exiting the calculation is quite similar to that used for the
LLG Micromagnetic simulatorTM where the convergence
criterion concerns the absolute value of the largest change
in a single direction cosine (Max − M) < 10−6.

The calculations show some dependence on mesh size.
The critical reversal field increases with decreasing mesh
size as will be discussed in the following sections. However,
to allow for a clear comparison between the calculations
done for different geometries: film, nanowire and dot, the
same cell size was used: a = 2 nm, which corresponds to
�ex/a = 6. This ratio gives a good order of magnitude of
the critical field values compared to that obtained exper-
imentally for cobalt films [14] and is also quite similar to
that used by Thiaville et al. to describe the magnetization
reversal of Permalloy circular disk [8].

Fig. 3. 2D computed magnetization curve for an infinite thin
film (mesh size a = 2 nm.).

4 Micromagnetic modelling: case of a thin
film

Stripe domains exhibit various configurations ranging
from a succession of up and down domains found in high
Q materials to stray-field free patterns of the Landau-
Lifshitz type in small Q materials. The epitaxial cobalt
films studied here, with Q = 0.4 correspond to the latter
situation. Figure 2 exhibits the equilibrium magnetization
profile for the single film 50 nm thick in zero field, after
demagnetizing from saturation along +OZ. One can ob-
serve in this figure closure areas in the vicinity of the top
and bottom surfaces which ensure a virtually stray-field
free magnetization configuration with alternate flux cir-
culations. In other words, the magnetization pattern can
be viewed as a row of vortices, where, in the core of all of
them the magnetization always points in the same direc-
tion: +OZ. As the magnetic period 2W is an additional
variable in the minimization process, the configuration of
lowest energy provides the equilibrium domain period and
the associated magnetization distribution. The numerical
calculations of the equilibrium magnetization are repeated
for each value of an applied field in order to simulate
hysteresis loops. The same field orientation, namely an
in-plane longitudinal field (along OZ) is kept through-
out the whole paper. The hysteresis loop of the infinite
thin film is shown in Figure 3. This curve is in reasonable
agreement with the experimental ones obtained for thin
Co films of equivalent thickness [14]. The characteristic
shape of the B(M) curve may be explained as followed.
Upon decreasing the magnetic field starting from in-plane
saturation (+OZ), the magnetization progressively tilts
out of the plane in alternate directions and then trans-
forms into stripes separated in the mid-plane by simple
Bloch wall segments while closure domains near both sur-
faces ensure a nearly stray-field free pattern. Note that the
Bloch walls are initially polarized parallel to the applied
field (+OZ) and contribute to non zero magnetization in
the remanent state. Conversely, the zero-field pattern ob-
tained starting from the opposite saturation state (−OZ)
will lead to Bloch wall segments of opposite polarisation.
When the magnetic field is further decreased and then
reversed (path 1 in Fig. 3), the wall shrinks while clo-
sure domains extend. Finally, the inner Bloch segments
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are transformed in circular Bloch lines whose position co-
incides with the vortex cores already visible in Figure 2,
magnetized opposite to the applied field. The reversal of
the vortex core occurs for B = −171 mT and gives rise to
the large jump of magnetization observed in the hysteresis
loop. Refining the mesh results only in changes of the core
reversal field but does not affect either the remanent mag-
netization or the saturation field. The general tendency is
for the switching field to increase as the mesh size is re-
duced (e.g. for a = 2.5 nm B = −130 mT; a = 2 nm
B = −171 mT). Furthermore, in this 2D simulation, the
core reversal occurs at the same time over the whole in-
finite length of each Bloch line. As already mentioned in
reference [5], Figure 16, the magnetization reversal may
be helped (partly in the present case) by the field-induced
magnetization rotation in closure domains which triggers
the generation of new Bloch lines, situated at both sides
of the initial Bloch line. As these new lines are magne-
tized parallel to the field, the final reversal may be viewed
via the collapse of these various lines. A general descrip-
tion of the vortex core reversal under an applied field, also
labelled “topological hysteresis”, can be found in the lit-
erature; see for example in references [5] and [15].

Figure 4 shows the corresponding evolution of the equi-
librium stripe width W as a function of the applied field.
The expected domain width is strongly field-dependent
in agreement with previous calculations [16,17]. Starting
from saturation, the domain width W should increases
under a decreasing field till the magnetization reversal oc-
curs. This behaviour can be understood in a crude model
where the pattern is assumed to be composed of a suc-
cession of domains uniformly magnetized along ±θ with
MZ/MS = cos θ BMS/2K, separated by thin (Bloch)
walls with a magnetization rotation 2θ less than 180◦. In
this model, the domain period results from a balance be-
tween domain anisotropy and demagnetizing energy both
of which scale like sin2θ, and the associated wall energy,
proportional to (sinθ−θ·cos θ) [2]. Therefore domain width

should be proportional to W ≈
√

Dγ180
2K

sinθ−θ cos θ
sin2 θ

where
γ180 is the conventional 180◦ Bloch wall energy. Starting
from positive saturation (+OZ), with decreasing field, θ
should increase and consequently W should too (see path 1
in Fig. 4). Finally, the large step of the stripe period ob-
served in the reversed field (Fig. 4) corresponds to the
jump of magnetization in Figure 3 described previously.

In the literature, controversial results have been pub-
lished to date. In the experiments reported in [16–19], nei-
ther the monotonous variation of W with B [16–18] nor
the predicted jumps of the magnetic period of the pattern
at the magnetization reversal [19] have been observed. On
the other hand, for iron (111) thin films, Foss et al. [20]
did report a variation of the period of the stripe with
B. However, keeping W constant, one gets a correspond-
ing hysteresis loop for the film quite similar to that of
Figure 3. Consequently, in the following calculations for
nanowires (Sects. 5 and 6) the domain width will not be
adjusted with the applied field amplitude but kept con-
stant as W (B = 0) = 58 nm.

Fig. 4. Variation of the equilibrium magnetic period 2W ver-
sus the applied field along the hysteresis loop, case of an infinite
thin film with mesh size a = 2 nm (see text).

5 Nanowires and dots: general overview

5.1 Hysteresis loops

We investigate first the magnetization processes of
nanowires of Co (same magnetic parameters as before)
with thickness D = 50 nm (Fig. 1b). The calculation is
restricted to the case of a periodic transverse magnetic
pattern of length L along OZ (the external magnetic field
is always applied parallel to this direction). A fixed pe-
riod 2W is considered equal to that obtained for the in-
finite slab in zero field (2W = 116 nm). Two situations
are reviewed: (i) where the width of the nanowire L1 is
smaller than the domain width itself, in which case we
use L1 = 40 nm and (ii) where the width L2 is larger than
one period of the pattern then L2 = 200 nm. We study
next small dots (Fig. 1c) of width either L1 or L2 and lim-
ited in size along OX to 116 nm in which case the mag-
netic pattern is only constrained by the geometry. In other
words, unlike the case of nanowires, we do not impose
any periodicity for the magnetic structure. Figure 5 shows
the computed hysteresis loops for nanowires and dots.
The main characteristic fields (saturation, coercivity and
magnetization reversal) are deduced from these plots and
gathered in Table 1. As the stripe length L increases, the
remanent magnetization value increases too, reaching a
maximum for the infinite thin film case. The opposite vari-
ation with L is observed for the saturation field which de-
creases for increasing L. This last effect may be attributed
to a demagnetizing shape effect. The saturation field is
much lower than the anisotropy field 2K/M(714 mT) for
the infinite slab, however, it increases with the ratio 2W/L
but is still lower than 2K/M +µoM(= 2474 mT) even for
L2 = 40 nm.

5.2 From saturation to stripe formation

This section is devoted to stripe formation while decreas-
ing the magnetic field starting from saturation. Stripe nu-
cleation is quite a complex process which depends on many
factors, therefore the same procedure has been utilized for
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Fig. 5. Hysteresis loops of infinite nanowire of thickness 50 nm and width a) 40 nm and b) 200 nm. Corresponding loops for
dots of same thickness 50 nm, equal length 116 nm and width c) 40 nm and d) 200 nm (see text).

Table 1. Key magnetic parameters and different critical fields
(mT) for the three different geometries studied.

L1 = 40 nm L2 = 200 nm L3 ≈ ∞
Fields (mT) Ribbon Dot Ribbon Dot Thin film
Saturation ≈2100 ≈2100 ≈1200 ≈1200 320
Coercivity 64 64 57.5 62 47

magnetization −651 −577 −379 −290 −171
reversal

remanent
0.058 0.067 0.100 0.144 0.276

magnetization
(Mz/Ms)

all calculations. Starting from saturation (the original ini-
tial configuration), the applied field is decreased step by
step. At each step, the micromagnetic structure is allowed
to relax to its new equilibrium configuration. This last con-
figuration serves as new initial configuration in the next
step. For the wire geometries, this part of the loop is de-
scribed with very small jumps of the applied field equal
to ∆B = 10 mT each while larger ones: ∆B = 100 mT
are used for the dots. In both cases, stripe nucleation can
be associated with a sudden change in the slope of the
hysteresis curve (Fig. 5). The change is more pronounced
in the case of the dot geometry where stripe nucleation
(points (b) in Figs. 5c and 5d) is at the origin of small
secondary hysteresis loops whose size is mainly due to the
larger ∆B in the dot case. Effectively, the lower the ∆B
value, the smaller the secondary hysteresis loop is for ei-
ther of the two geometries studied. Continuing along the
hysteresis curve, the core (or wall polarity) reversal of the

stripe pattern occurs in a reverse field, at point (c), be-
fore the opposite saturation state finally occurs. As can be
seen in Figure 5, all hysteresis curves include the central
loop resulting from this wall polarity reversal which will
be described in detail in the next section.

In the case of dots with ∆B = 100 mT, the stripe nu-
cleation occurs via a process already described in [4]. In
the peculiar case of a wire, where the loop is described with
a small jump of field, the development of stripe domains is
qualitatively described in Figure 6 for one specific period,
2W , of the magnetic pattern. Starting from the saturated
state, a magnetization distribution similar to that of the
well known “Flower” state [21], appears first in a trans-
verse XOY plane (Fig. 6a). It is noticeable that at this
stage the transverse MX component is next to zero and
that the magnetization distribution does not depend on
the X coordinate so that no periodic structure is gener-
ated. Reduction of the field breaks this invariance (Fig. 6b)
and a periodicity along OX is settled which gives rise to a
very small kink in the hysteresis curve. In successive trans-
verse planes (the Y OZ plane) the average magnetization
points alternate towards +/−OY , and the magnetization
distribution observed in these planes may be compared to
that of a “S” state occurring in rectangular particle. A
further decrease of the field leads to the pattern depicted
in Figure 6c with domains alternately pointing up and
down as we move along the wire elongation direction. In
one domain, and at a given X (Fig. 6c), the distribution
is reminiscent of the so-called “leaf” state [22]. Following
the evolution of the pattern in the XOY plane while mov-
ing along OZ (from the back to the front of the wire) it is
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Fig. 6. Illustration of the development of stripe domains in a
wire (L2 = 200 nm) in decreasing field from a) to c). At each
step, the magnetization distribution is shown in projection on
two orthogonal planes: x = 0 and z = 0. In d) magnetization
is shown for three different OXY planes (z = cte), obtained
from numerical simulation and corresponding to the situation
described in c).

interesting to observe as shown in Figures 6c and 6d that
one inner 180◦ vertical wall cants in the opposite direction
as it approaches the head and/or back of the wire.

These complex nucleation mechanisms for nanowires
and dots are considerably different from the predicted by
a 2D model.

5.3 Remanent state

Finally, in the remanent state, whatever the length L is,
one obtains regular parallel stripes oriented along OZ
both in the case of nanowires and the dots in contrast
to what is quoted in [23] for much larger dots. The rema-
nent domain structures in Co nanowires have also been
studied in great detail by Prejbeanu and al. [24] using
MFM observations and by Brückner et al. [25] by Lorentz
microscopy and micromagnetic simulations. The MFM ob-
servations in [24] may be understood in the light of our
numerical results (Fig. 7b) where only a partial flux clo-
sure is expected near the top and bottom surfaces of the
wire leading to non-zero stray fields outside the sample
and at the origin of the strong white and black contrast
which they observed. Our results are also in qualitative
agreement with those of [25] and compatible with the

  

                         

Fig. 7. Maps of magnetization components My (top), Mx
(middle) and Mz (bottom) in the XOY plane at the center
of the stripes (z = 100 nm) in decreasing magnetic field: a)
200 mT, b) 0 mT and c) 370 mT. For each Mx, My and
Mz figure, the colours indicate the orientation of the magneti-
zation with respect to the OX, OY and OZ axis respectively:
red (white) for parallel and blue (black) for antiparallel orien-
tation.

Lorentz images they obtained. However, as mentioned be-
fore, our magnetic pattern is not invariant along Z, and a
very small canting (opposite from one face to the other)
of the inner 180◦ walls is still present. Nevertheless, we
have averaged the field vector �∇× �M over X (direction of
the incident electrons). This gives, to first order, an idea
of the expected Lorentz contrast in agreement with what
is experimentally observed for the inner 180◦ walls while
the imaging of the closure domains is not well elucidated
in this approach.

6 Wall polarity reversal for geometries where
the stripe length is limited

The evolution of a domain pattern nucleated in a positive
(+OZ) magnetic field under application of a decreasing
field in a wire 200 nm long is shown Figure 7. The mag-
netization direction in domains and closure areas tends to
align with the field direction inducing a shortening of the
inner Bloch wall segment as can be seen in Figures 7a and
7b. As already described for an infinite layer, the Bloch
wall segment reduces progressively to a Bloch line similar
to a vortex (Fig. 7c) in the core of which, due to the ex-
change constraint, the magnetization is pinned to (+OZ)
corresponding to the initial saturated state. Therefore al-
most all the 3D space directions for the magnetization
vector �M are used. According to the Feldkeller represen-
tation [26], the unit sphere is nearly covered once leading
to a winding magnetization distribution. In such situation,
there is no continuous way to reach the opposite saturated
state where all the moments will be along −OZ. The Bloch
line core reversal will not occur suddenly over all the sam-
ple as in the 2D problem discussed in Section 4 but will
process non-uniformly along the various lines through the
propagation of point defects (Bloch points described in the
next paragraph) once they are nucleated at a sufficiently
high reverse field.
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6.1 Bloch points

In micromagnetism, one usually assumes that the mag-
netization vector �m(�r) varies continuously with position
�r. As shown in the previous paragraph, the present con-
figuration topologically demands the introduction of sin-
gularities called Bloch points [26] to reach the saturated
state. The definition of a Bloch point implies that the
magnitude of the gradient of �M(�r) tends to infinity in its
neighbourhood. It implies that locally the exchange en-
ergy density dominates all other energy terms. One can
also say that for any closed surface surrounding the point,
the magnetization vector covers the unit sphere exactly
once [8]. Furthermore, considering all continuous trans-
formations, the Bloch point is the only stable singularity
in magnetism [27]. Consequently Bloch-point injection oc-
curs either individually from the surface of the magnetic
sample or in pairs in the bulk sample [28]. A good descrip-
tion of the various Bloch-point (BP) configurations such as
divergent, convergent, circulating and contra-circulating
for example may be found in [29]. The divergent and con-
vergent Bloch points are a well-known basic pair of spheri-
cally symmetric solutions given by �M = ±Ms

�r
r (with +/–

for divergent (+) / convergent (–) BP located at r = 0 in
spherical coordinates). These BP configurations are also
named: “hedgehog” BP. If Cartesian coordinates are used,
the previous magnetization distribution may be written as

�M = ± Ms

r




1 0 0
0 1 0
0 0 1








x
y
z



 (1)

the Bloch point being centred at x = y = z = 0. An
infinite set of distinct Bloch-point configurations exists, as
those obtained for example by a θ rotation of the magnetic
moments around the Z axis. Their distribution reads:

�M = ± Ms

r




cos θ −sin θ 0
sin θ cos θ 0
0 0 1








x
y
z



 (2)

which will be very helpful in the following discussion.

6.2 Bloch-point injection and propagation mechanism

6.2.1 Nanowire and dot with L1 = 40 nm

The reversal of wall polarity or, equivalently, the magne-
tization switching of the vortex is investigated first for the
short stripe case: dot and wire of width L1 = 40 nm. This
process begins via the injection of a single Bloch-point per
wall. Usually, the beginning of the core reversal for the dot
(119 × 50 × 40 nm3) is similar to that of a nanowire.

The magnetization distribution in the XOZ plane for
Y = 25 nm corresponding to half the thickness of the sam-
ple, just before the Bloch points are nucleated, is schemat-
ically presented in Fig. 8a) over one magnetic period. The
two vortex cores shown are still oriented parallel to +OZ
but, due to a sudden increase of the magnetic field, the

precession, which breaks the symmetry between the two
surfaces, has induced an asymmetric variation of the ra-
dial magnetization components at their extremities. As
mentioned in [8], the increase of the radial components
helps the Bloch points to enter through a different sur-
face for each one of the two vortex cores: z = 0 nm for
the right one and z = 40 nm for the left one (Fig. 8b).
The field values at which this Bloch points nucleation
occurs are B = −577 mT and –651 mT for the dot
and nanowire respectively. The expected structure of the
Bloch-points in zero field is z-circulating convergent on
one vortex and z-circulating divergent on the other one
according to Slonczewski’s description [29]. Figure 8c gives
a schematic drawing on an enlarged scale of the nearly-
180◦ wall between two main domains I and II in the CD
area. The precession motion in points C and D helps in
nucleating the Bloch-point which may be viewed as a re-
sult of gathering the two extremities of the wall near the
rear sample surface in Figure 8d. In the vicinity of this
surface, the magnetization direction of the vortex core is
now reversed and lies parallel to the applied field. Ob-
viously, the pattern drawn in Figure 8d is not invariant
along OY and the flux should be closed from domain I
mainly magnetized along OY to domain II magnetized
along (−OY ). Figure 9 displays various two-dimensional
spatial distributions of the three-dimensional magnetiza-
tion vector field obtained in the case of a wire (LLG Micro-
magnetic simulator). The first one is drawn in the XOZ
plane at a depth y = 25 nm (Fig. 9a), and the second
one in the XOY plane perpendicular to the direction of
elongation of the stripe (Fig. 9b). There is one arrow per
square mesh cell 2×2 nm2, whose length is proportional to
the in-plane magnetization component. The Bloch-point is
roughly 8 nm from the surface where it nucleates. As nu-
cleation occurs under the application of a strong external
field, the magnetization distribution near the singularity is
affected. It is instructive to compare the BP core structure
obtained by simulation to that obtained starting from an
original divergent BP submitted to a rotation around OZ
by an angle θ such that −π/2 < θ < −π (a visual inspec-
tion of Fig. 9b) shows that θ is of the order of −3π/4).
Calculation of the divergence of the vector field given by
equation (2) with θ = −3π/4 indicates that this quan-
tity is negative everywhere around the core. However, the
simulated structure of the BP is much more complex that
this simple picture and the predicted distribution given
by equation (2) is only valid in the vicinity of the core of
the BP. At a larger scale the flux-closure or vortex pat-
tern along OZ imposes a slight modification of this distri-
bution inducing opposite charges in the core surrounding
what is confirmed when using the specific application “di-
vergence” supplied by the OOMMF program.

A large decrease of the exchange energy of the whole
magnetic pattern is noticed at the beginning of the vortex
core reversal. We propose to give a rough estimation of the
nucleation field (see Tab. 1) by comparing mainly the ex-
change contribution to the energy of a Bloch point to that
of the central part of the wall or vortex line. Although the
energy density diverges near the center of a Bloch point,
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Fig. 8. Top view of the magnetization distribution in the mid-plane of the sample and over one period exhibiting schematically
the area where Bloch points are expecting to nucleated. a) Due to core magnetization and next to surfaces, the magnetization of
the domain in the vicinity is radialy tilted in order to close the flux. b) Precession effects strengthen these radial components in
CD and symmetrically at the bottom of the left wall. Conversely, the radial components decrease at the two other extremities.
The same sequence as in a), b) is reproduced from a different perspective in c) before nucleation and d) gives a schematic
drawing of the Bloch point magnetization distribution in the vicinity of its core.

it has been shown that the total exchange energy of a fi-
nite region of radius R amounts to EB = 8π AR [26]. This
term is irrelevant to any possible rotation of the magne-
tization distribution described previously while the next
term in energy is the demagnetizing energy which is mini-
mized by this rotation. Therefore, we shall consider EB in
the following. On the other hand, the corresponding ex-
change contribution of a vortex of length L1may be taken
to be equal to EL = 4πAL1 [27]. It is to be noticed that
this equilibrium energy is independent of the diameter of
the vortex. Under an applied field B and far from the
core of the vortex the magnetization in the domains ro-
tates by a small angle δθ which can be approximated by
δθ ≈ in (δθ) = MB/2K, following the classical Stoner-
Wholfarth rotation model. Therefore, an increase of the
exchange contribution of the vortex line of the order of
δEL = A · (π2δθ)L1 is expected. If we take a Bloch point
radius of R = 6 nm (1/3 of the domain-wall width �B) the
excess of exchange contribution along the line will exceed
the energy of a Bloch point for an applied field larger than
B ≈ 16KR/πML1 which gives:

∣
∣
∣ �B

∣
∣
∣ = 280 mT. While

lower than the computed value, this crude model gives a
good order of magnitude of the critical reversal field and
predicts that this field must decrease when the width L of
the sample increases in agreement with results of our cal-
culations reported in Table 1. Finally, once the nucleation
has occurred, the Bloch point propagates along the vortex
line ensuring the magnetization reversal of its core.

To investigate the Bloch-point propagation, the time
dependent calculations were performed starting with an
initial pattern corresponding to the equilibrium magne-
tization distribution obtained for an applied field value
slightly lower (by 1 mT) than the critical reversal field
value. At time t = 0, an increase of the applied field by
a step ∆B was applied to this initial pattern. As the be-
haviour of the two vortex lines per magnetic period for
the nanowire or the full dot is highly symmetrical (e.g.
identical BP velocity values, except the opposite direction
of motion), only results pertaining to one of them are re-
ported in the following. The reversal process (under the
OOMMF program), as already quoted in [8], is associated
with a large increase of the maximum torque (d �M/dt) fol-
lowed by torque oscillations which can be more or less cor-
related to the BP crossing successive mesh points, while a
large peak signal is noticed at their annihilation. LLG mi-
cromagnetic simulations using the evolution of the largest
change in a single direction cosine with time applied to
the wire geometry gives the same information. In order
to quantify the Bloch point motion, its time dependent
position was followed visually on a two-dimensional spa-
tial distribution of the magnetization vector display for
different cross-sections like that shown in Figure 9.

First off all we extracted the time needed to observe
the appearance of the first individual Bloch point on
the vortex line: t1. Once the nucleation is achieved, the
Bloch point propagates along the vortex line ensuring the
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Fig. 9. Enlargement of the magnetization distribution around
a Bloch-point obtained by numerical simulation (LLG Micro-
magnetic simulator) in cross-section a) XOZ plane at mid
thickness y = 25 nm and b) in a plane perpendicular to the
direction of elongation of the stripe: z = 9 nm, the case of a
nanowire of width L1 = 40 nm. The length of the arrows is
proportional to the in-plane component. There is one arrow
for each mesh 2 nm × 2 nm.

magnetization reversal of its core. In most cases studied, a
second Bloch point appears with some time delay, at time
t2, at the opposite end of the same line. Finally, both Bloch
points collapse at time tC . These results are gathered in
Figure 10 for the peculiar case of the dot and for various
values of ∆B ranging from 7.5 mT to 200 mT. The time
needed for the appearance of the first Bloch point gets
shorter when increasing the amplitude of the field jump
∆B and approximately follows the form: t1 ≈ 0.1/

√
∆B,

where t1 is expressed in ns and ∆B in mT. Similar results
for the nanowire lead to the relation t1 ≈ 0.08/

√
∆B. For

a given increment of field, the process always starts first
for the nanowire. However, the role of both defects and
thermal agitation should not be forgotten.

The positions of the Bloch points during the core re-
versal are reported in Figure 11 for three different ∆B
values only for the sake of clarity. The average Bloch
point velocity VBP based on all numerical results shows
a quasi-linear dependence versus the field increment and
can be expressed as VBP = vo + µ∆B. The BP mo-
bility µ seems slightly higher for the wire case where
µ = 4.1× 10−2 kms−1 mT−1 with respect to the dot case
where µ = 3.7 × 10−2 km s−1 mT−1 while vo is the or-
der of 1.5 km/s in both cases. Moreover, one can notice
that the velocity extrapolates to a nonzero value: vo for
∆B = 0. Effectively, for ∆B < 0 the core reversal can
be obtained by artificially injecting the structure of a BP
core in the magnetization configuration located at one end
of the vortex line in the initial step of the calculation. Un-
der such conditions, the simulations done in the case of
a dot showed that the mobility of the Bloch point is sig-

 

Fig. 10. Variation of the time t1 (in ns) needed for the
appearance of the Bloch point at one surface of the dot
(116 × D = 50 × L1 = 40 nm3) versus the increment of field
∆B (mT). t2 corresponds to the nucleation of a second Bloch
point at the other surface of the dot while tC is the collapse
time of the two Bloch points inside the dot.

 

Fig. 11. Evolution with time of the Bloch-point position along
the line in the case of the dot with L1 = 40 nm (� first nucle-
ated point starting from surface z = 0 nm and � second Bloch
point from the surface z = 40 nm) and corresponding points

(first © and second• Bloch-points) for the wire geometry.

nificantly lowered: µ = 2.5 × 10−3 km s−1 mT−1 (Fig. 12)
while this singularity must travel over the whole length
L1 as no other point injection occurs during the magneti-
zation reversal process. Note that the velocity equals zero
for ∆B = −580 mT which corresponds to a zero applied
field (keeping in mind that the critical field found for mag-
netization reversal is B = −577 mT). It turns out that it
is possible to stabilize, at least for the dot geometry, the
two vortex lines containing one Bloch point each, in zero
applied field.

A new estimation of the upper limit of the width of the
vortex core at reversal can be made based on the above
results. For a very weak value: ∆B = 1 mT and assuming
that the variation of the longitudinal component of mag-
netization is mainly due to the polarity reversal of the core
of the two vortices one gets an effective radius equal to:
Reff = 5 nm [with 2L1(π R2

eff )2MS = (MZf − MZi).V ;
where V corresponds to the volume of the dot and MZf ,
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Fig. 12. Case of a dot with L1 = 40 nm. Average velocity
of the first Bloch point versus the increment of field ∆B in
mT with respect to the critical field (B = −577 mT) needed
for the spontaneous appearance of a magnetic singularity. The
applied field is equal to B = −(577 + ∆B) mT.

MZi are the final and initial average value of MZ over V
respectively].

For sake of completeness, the vortex core reversal has
also been computed for different values of the damping
constant. In the case of lower values but still not too weak
(i.e. α ≈ 0.1) the features are very similar except for the
delay before the core reversal starts which increases. For
a still lower damping constant (α ≈ 0.01) an irregular
reversal process with the creation of an additional pair
of Bloch-points leading to a non-reversed isolated island
along the vortex core is observed. A full analysis of the be-
havior of these isolated islands, also called magnetic drops,
can be found in [9]. Finally, the critical fields needed for
Bloch-point nucleation always increase upon mesh refine-
ment.

6.2.2 Nanowire and dot with L2 = 200 nm

An increase of the length of the magnetic stripes (always
elongated along OZ) due to an enlargement of the dimen-
sion of the dot (now 119 × 50 × L2 = 200 nm) and/or
of the lateral width of the wire generates a new mecha-
nism for the vortex core reversal. Under the action of a
reverse applied field the core of the walls (lines) are more
and more compressed leading to the creation of a pair of
Bloch-points in the center of each line at B = −290 mT
(−379 mT) for dot (and wire) respectively. To understand
this phenomenon, it is interesting to estimate the vortex
width (or diameter) along the line. Taking the case of a
dot as an example, the width of the Bloch-wall segment
was estimated in the remanent state. This width labelled �
was deduced from the magnetization profile MY (x) in the
mid-plane of the dot from the slope (dMY /dx) for x taken
in the middle of the wall. The obtained value, � = 11 nm,
is comparable to what is expected for a pure Bloch wall
(2

√
A/K = 12 nm). However, this width decreases when

the vortex line reaches the surfaces where � = 8.5 nm. In a

 

 

 

Fig. 13. Top view in the plane y = 25 nm of the magnetiza-
tion distribution showing the presence of a pair of Bloch-points
located at z = 24 nm and 146 nm. Case of a nanowire 50 nm
thick, of width L2 = 200 nm under an applied field
B = −(378 + 50) mT at time t = 0.03 ns.

reverse field, just before the nucleation of a pair of Bloch-
points, the vortex core diameter gets smaller in the center
of the vortex line and one gets � = 5.1 nm in the mid-
dle of the dot while � = 6.4 nm at the vortex extremities
which explains that the Bloch-points are no longer nucle-
ated at the line borders. Once the pair of Bloch-points is
nucleated, they move towards the nearest surface in or-
der to reverse the wall chirality. In addition, for very high
value of the reversal field (large ∆B) an isolated BP may
nucleate from one surface.

Figure 13 gives a top view (plane y = 25 nm) of the
magnetization distribution for the wire geometry showing
the intimate structure of the pair of Bloch-points. The
structure of the second one located at z ≈ 146 nm is
similar to that already described in the previous section.
Around the first BP (at z ≈ 24 nm), the magnetization
distribution can be crudely described by equation (2) in
the case of a convergent point with 0 < θ < π/2. A vi-
sual inspection leads to a rotation angle roughly equal
to θ ≈ +π/4. The magnetic charges are positive in the
vicinity of both points, the charge density being higher
for the first Bloch point than for the second one. This is
clearly visible in Figure 13 where near z = 24 nm, the
BP structure is mainly convergent while for the other BP
the pattern is divergent along the radial OZ direction and
convergent along the others. Here also, this visual analy-
sis is confirmed by using the application “divergence” sup-
plied by OOMMF. However, the spatial distribution of the
three-dimensional magnetization vector field is a little bit
more difficult to explore for the dot (116× 50× 200 nm3)
as the vortex line is not along a straight line strictly par-
allel to OZ as in the wire’s case but slightly tilted, so that
the vortex core ends at both extremities (planes z = 0 and
z = 40 nm) at different levels: ∆y = 4 nm.

To describe the remagnetization of the structure, the
same experimental procedure was used as before in the
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Fig. 14. Evolution with time of the position of the pair of
Bloch-points versus ∆B for the dot geometry � and wire one
(©). Width L2 = 200 nm.

L1 case. Starting with the initial equilibrium magnetiza-
tion obtained for the magnetic field just before inversion:
B = −289 mT (−378 mT) for dot (and nanowire) re-
spectively, different calculations were performed with a
constant reversal field. In the numerical experiments, the
increase of the amplitude of the applied field was in the
range from 50 to 200 mT (i.e. from B = −339 mT to
−489 mT for the dot). The positions of the two Bloch
points situated at the extremities of the reversed segment
were collected and are reported as function of time in Fig-
ure 14 for different values of the field increment ∆B.

The time t1 needed for the appearance of the magneti-
zation reversal process approximately follows the relation:
t1 ≈ 0.1/

√
∆B both for dot and nanowire (with t1 in ns

and ∆B in mT). Note that this expression is quite simi-
lar to that expressed for the nucleation of a single point
in the previous case where L = 40 nm. At the very be-
ginning, Bloch-points move quite fast. This motion slows
down with increasing time. However, a huge difference is
noticeable between the mobility of the two Bloch points
and between the different geometries studied. Moreover,
for a high ∆B value a secondary nucleation of a single
Bloch point from the surface z = 200 nm may occur. An
overall average value of Bloch-point velocity has been cal-
culated when the reversed segment length increases from
60 to 120 nm. One obtains a linear relation of the type
VBP = vo + µ∆B. A large discrepancy is noticeable be-
tween the two geometries. The BP mobility amounts to
µ = 0.025 m/s mT for the dot and reaches a much higher
value for the nanowire: µ = 0.095 km/s mT. Furthermore,
in the case of a nanowire the two Bloch-points behave
quite differently along the line. The first BP moves quickly
towards the surface z = 0. It is useful to recall here that
near this surface and due to precession effects, the mo-
ments acquire a larger radial component. Such an effect is
less pronounced in the case of dot. However the motion of
the second Bloch point towards the surface z = 200 nm is
much slower whatever the geometry studied. Finally, sim-
ilar as for shorter stripes of length L1, the velocity does
not tend to zero with ∆B. Although BP injection is locked
by an energy barrier, artificial injection of one BP near a
surface or a pair of BP in the middle of the core line, even

below the critical field amplitude, leads to a full reversal
of the chirality of the wall.

7 Conclusion

We have investigated the magnetization reversal of three
different elements: an infinite thin film, a wire and an iso-
lated dot. All of them are able to support stripe domains in
the remanent state. Various codes were used according to
the geometry studied. While the nucleation of domains, in
an infinite slab, is a continuous process occurring over the
whole sample area, we have shown that for wires and dots
in decreasing field, the magnetization starts to oscillate in
the vicinity of surfaces at both ends of the element only.
However, the preliminary results show that the developing
stripe pattern is strongly affected by the numerical pro-
tocol followed in particular the method of decreasing the
applied field (large or small steps). In all cases, this implies
a tiny step in the M(B) curve. On the other hand, tak-
ing advantage that standard micromagnetic calculations
involving Bloch points are less problematic than it might
seem, we presented in this paper the study of the main
hysteresis loop for these three geometries. For wires and
dots only, and according to the width of the stripes, we
showed that the inner wall polarity reversal is induced
either by nucleation of an isolated BP near one surface
(short width) or via a pair of BP in the middle of the line
for larger width. A description of the different magnetiza-
tion distributions of BP has been shown and tentatively
proposed. A description of the key characteristics of the
BP displacements are presented and discussed in detail.
Several problems need to be clarified experimentally. The
first one is linked to the field variation of the period of the
pattern. Calculations predict a huge effect, in particular
near the reversal field. It would be worthwhile to follow the
evolution of W with B for a thin slab while at each step of
the observation a small AC field of decreasing amplitude
is applied in order to attempt the lowest energy configu-
ration, including an adjustment of the number of stripes.
For elements of finite size, it would be interesting to follow
the stripe formation and see how this magnetic pattern in-
vades the whole volume. Last but not least would be the
observation of the core reversal of the inner wall of the
stripe under field. While direct experimental proofs of the
existence of BP’s have been clearly established for Garnet
films [30,31], it would be interesting to undertake similar
experiments for metallic thin films and dots.

The authors are very grateful to Dr. Yves Roussigné for en-
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J. Linarès and Dr. L. Thomas for fruitful discussions and nu-
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the manuscript.
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27. M. Kléman, Points, Lines and Walls (Wiley, Chichester,

1983)
28. P.R. Kotiuga, IEEE. Trans. Magn. 25, 3476 (1989)
29. J.C. Slonczewski, A.P. Malozemoff, Physics of domain

walls in magnetic garnet films, International School of
Physics – Varenna Italy June/July 1977 (Physics of
Magnetic Garnets, Soc. Italiana di Fisica – Bologna, Italy,
1978)

30. Y. Kabanov, L. Dedukh, V. Nikitenko, Pis’ma Zh. Eksp.
Teor. Fiz. 49, 551 (1989); Y. Kabanov, L. Dedukh, V.
Nikitenko, JETP Lett. 49, 637 (1989)

31. A. Thiaville, J. Miltat, Europhys. Lett. 26, 1006 (1994)


